pouet.chapril.org est l'un des nombreux serveurs Mastodon indépendants que vous pouvez utiliser pour participer au fédiverse.
Chapril https://www.chapril.org est un projet de l'April https://www.april.org

Administré par :

Statistiques du serveur :

1,1K
comptes actifs

#geometry

12 messages9 participants0 message aujourd’hui

These two art pieces are based on the deformation of a hexagonal tiling into a topologically equivalent "tiling" composed of parts of concentric circles, all parts having the same area (third image). Selecting one hexagon as the center, we transform it into a circle of radius 1. Next concentric circle will hold the 6 adjacent tiles as sectors of rings. And so on, the circle of level n will have radius sqrt(1+3·n·(n+1)) (difference of radius when n tends to infinity approaches sqrt(3)). This map can be coloured with three colours, like the hexagonal tiling. For the artwork, suppose each sector of ring is in fact a sector of a circle hidden by inner pieces. Then choose a colour and delete all pieces not of this colour. Two distinct set of sectors can be produced, one choosing the central colour, one choosing another colour. Finally recolour the pieces according to its size.
#MathArt #Art #Mathematics #geometry #tiling

I'm only interested in the applied Romik's Ambidextrous Sofa solution.

mathstodon.xyz/@johncarlosbaez #math #geometry

MathstodonJohn Carlos Baez (@johncarlosbaez@mathstodon.xyz)Attaché : 1 image Here are the pictures from 2016, and one from 2017. • http://math.ucr.edu/home/baez/visual_insight/20160101%20-%20Free%20Modular%20Lattice%20on%203%20Generators.html 2016 - 01 - 01 — Free Modular Lattice on 3 Generators • http://math.ucr.edu/home/baez/visual_insight/20160115%20-%20Cairo%20Tiling.html 2016 - 01 - 15 — Cairo Tiling • http://math.ucr.edu/home/baez/visual_insight/20160201%20-%20Hoffman-Singleton%20Graph.html 2016 - 02 - 01 — Hoffman–Singleton Graph • http://math.ucr.edu/home/baez/visual_insight/20160215%20-%2027%20Lines%20on%20a%20Cubic%20Surface.html 2016 - 02 - 15 — 27 Lines on a Cubic Surface • http://math.ucr.edu/home/baez/visual_insight/20160301%20-%20Clebsch%20Surface.html 2016 - 03 - 01 — Clebsch Surface • http://math.ucr.edu/home/baez/visual_insight/20160315%20-%20Zamolodchikov%20Tetrahedron%20Equation.html 2016 - 03 - 15 — Zamolodchikov Tetrahedron Equation • http://math.ucr.edu/home/baez/visual_insight/20160401%20-%20Rectified%20Truncated%20Icosahedron.html 2016 - 04 - 01 — Rectified Truncated Icosahedron • http://math.ucr.edu/home/baez/visual_insight/20160415%20-%20Barth%20Sextic.html 2016 - 04 - 15 — Barth Sextic • http://math.ucr.edu/home/baez/visual_insight/20160501%20-%20Involutes%20of%20a%20Cubical%20Parabola.html 2016 - 05 - 01 — Involutes of a Cubical Parabola • http://math.ucr.edu/home/baez/visual_insight/20160515%20-%20Discriminant%20of%20the%20Icosahedral%20Group.html 2016 - 05 - 15 — Discriminant of the Icosahedral Group • http://math.ucr.edu/home/baez/visual_insight/20160601%20-%20Discriminant%20of%20Restricted%20Quintic.html 2016 - 06 - 01 — Discriminant of Restricted Quintic • http://math.ucr.edu/home/baez/visual_insight/20160615%20-%20Small%20Stellated%20Dodecahedron.html 2016 - 06 - 15 — Small Stellated Dodecahedron • http://math.ucr.edu/home/baez/visual_insight/20160701%20-%20Barth%20Decic.html 2016 - 07 - 01 — Barth Decic • http://math.ucr.edu/home/baez/visual_insight/20160715%20-%20Labs%20Septic.html 2016 - 07 - 15 — Labs Septic • http://math.ucr.edu/home/baez/visual_insight/20160801%20-%20Endrass%20Octic.html 2016 - 08 - 01 — Endrass Octic • http://math.ucr.edu/home/baez/visual_insight/20160815%20-%20Cayley%92s%20Nodal%20Cubic%20Surface.html 2016 - 08 - 15 — Cayley’s Nodal Cubic Surface • http://math.ucr.edu/home/baez/visual_insight/20160901%20-%20Kummer%20Quartic.html 2016 - 09 - 01 — Kummer Quartic • http://math.ucr.edu/home/baez/visual_insight/20160915%20-%20Togliatti%20Quintic.html 2016 - 09 - 15 — Togliatti Quintic • http://math.ucr.edu/home/baez/visual_insight/20161001%20-%20Diamond%20Cubic.html 2016 - 10 - 01 — Diamond Cubic • http://math.ucr.edu/home/baez/visual_insight/20161015%20-%20Laves%20Graph.html 2016 - 10 - 15 — Laves Graph • http://math.ucr.edu/home/baez/visual_insight/20161101%20-%20Escudero%20Nonic.html 2016 - 11 - 01 — Escudero Nonic • http://math.ucr.edu/home/baez/visual_insight/20161116%20-%20Bunimovich%20Stadium.html 2016 - 11 - 15 — Bunimovich Stadium • http://math.ucr.edu/home/baez/visual_insight/20161201%20-%20Truncated%20%7b6,3,3%7d%20Honeycomb.html 2016 - 12 - 01 — Truncated {6,3,3} Honeycomb • http://math.ucr.edu/home/baez/visual_insight/20161215%20-%20Romik%92s%20Ambidextrous%20Sofa.html 2016 - 12 - 15 — Romik’s Ambidextrous Sofa • http://math.ucr.edu/home/baez/visual_insight/20170101%20-%20Chmutov%20Octic.html 2017 - 01 - 01 — Chmutov Octic (5/n, n = 5)